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With the aid of the methods described in this paper one is able to determine, or at least to estimate, 
the contribution of inhomogeneity of the material to the overall variance of the results of analyses 
carried out in the compact material (spectroscopic methods). One is also able to determine the 
inhomogeneity variance of single-particle samples of a granular material prepared from the given 
compact material the use of this method for the determination of inhomogeneity of granular 
materials will be dealt with in the next paper). 

The possibility of separating individual components of the inhomogeneity variance may be 
put to use in the choice of technological schemes leading to the improved homogeneity of materials. 

Chemical inhomogeneity of materials due to nonuniform distribution of the analyzed 
element is the cause of a part of the scatter of the results of chemical analyses or 
physical measurements depending on composition. This extra variance increases 
with decreasing amount of the analyzed sample (i .e. the amount of material subjected 
to a single analysis, characterized by the size, shape and orientation within the mate­
rial). As far as the compact materials are concerned the problem of inhomogeneity 
arises in connection with the advent of modern spectroscopic analytical methods 
working with relatively small amounts of materials. Accordingly, the requirements 
on the homogeneity, particularly that of the reference materials used for calibration, 
are extremely stringent1

• 

In papers dealing with quantum spectrometry2 and emission spectrometry3 the effect of in­
homogeneity of compact materials on the results of analyses has been examined by analysis of 
variance. In the reference4 the inhomogeneity of a material is characterized by the variance of 
the results measured by a microprobe. Electron microprobe appears to be well suited for the study 
of the distribution of an element in the material, particularly if the variance of the measuring 
method is negligible in comparison with the variance due to the inhomogeneity of the material. The 
variance of the results measured by microprobe, however, does not provide sufficient information 
about the contribution of inhomogeneity to the variance of the results obtained with the same 
material by other methods working with samples of different volume and shape than the micro­
probe itself. 

The aim of this work is to find parameters necessary to fully characterize inhomo­
geneity of compact materials, suggest means of determination of these parameters 

Collection Czechoslov. Chern. Commun. [Vol. 42] [1977J 



Chemical Inhomogeneity of Materials 2983 

(by microprobe if possible) and work out mathematical procedures for the assessment 
from the measured parameters of the effect of inhomogeneity on the variance of the 
results for various methods of chemical analysis or measurement of physical quanti­
ties depending on composition. 

DEFINITION OF PRINCIPAL NOTIONS 

In order to be able to describe fluctuation of the concentration in a material we shall 
make use of certain notions from the theory of probability and mathematical sta­
tistics. The mean of a random variable e shall be designated by E(e). Its variance, 
defined as E{[e - E(e)]2} shall be designated by D2(e). The random variable e 
depending on a parameter. constitutes a random (stochastic) process. The corre­
lation function of the process e(.) is defined by: R(.', .") = E{[e(.') - E(e(.'))] . 
. [e(.") - E(e(."))]}. 

We shall be making use of the comparison of the course of concentration with the 
stationary random proce~ses, for which the mean and the correlation function . are 
invariant with respect to the translation: .* = • + const.; the mean is thus indepen­
dent of the parameter. and the correlation function depends only on the difference 

t =.' - .". 
For a me~sure of the effect of inhomogeneity we shall take 5 the inhomogeneity 

variance defined as follows: If !1c is a random variable describing the deviations of 
the measured concentrations from the mean, De its part due to the error of measure­
ment, and Dc the part due to the true fluctuations of the concentration(!1c = De + Dc) 
then with respect to the statistical independence of De and Dc we may write for the 
appropriate variances the relation: D2(!1c) = D;(oe) + D;(oc). D2(!1c) is the variance 
of the results of measurement, D;( De) is the variance of the measuring method proper 
and D;(oc) is the inhomogeneity variance (in addition to the designation D;(Oc) or 

Fig. 1 

Course of Concentration in a Two-Phase 
Material 

C1 , c2 Mean phase concentrations, c mean 
overall concentration, c1,' c2,' c, are con­
centrations estimated by regression. 
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2984 BoMcek: 

Di we shall also use the notation Diew), Di(V) in order to stress that we are dealing 
with a set of samples w, or to stress the dependence of the variance on the volume V, 
etc.) .• 

The variance Di generally characterizes the inhomogeneity of distribution of not 
only the analyzed element but also that of the factors! interfering with the analysis. 
In this paper, however, we shall assume that the effect of the interfering factors has 
been eliminated and hence that the variance Di is solely due to the nonuniformity 
of the distribution of the analyzed element. 

Typical course of concentration detected by a microprobe along a given directi.on 
in a compact material containing grains of two phases is shown in Fig. 1. c = E(c) 
is the mean concentration of the analyzed element; Cl and C2 are mean concentrations 
in the phases 1 and 2. The symbols Clr and C2r designate the regression courses of 
phase concentrations while Cr designates the regression course of tlle overall con­
centration. 

The principal task, i.e. the derivation of the inhomogeneity variance Di( w) for 
samples w greater than the sample for the microprobe, shall be developed gradually 
for phase-homogeneous materials with stationary course of the concentration (cr == c), 
for heter~geneous materials with stationary course of concentration (cr == C, C 1 r == Cl , 

e2r == C2, ... ), and, finally, for materials with instationary course of concentration. 

STATIONARY COURSE OF CONCENTRATION 

In the study of the stationary courses of concentration we shall use some of the results 
of Chinchin's6 correlation theory of stationary random processes. The correlation 
function, R(t), of a stationary random process depending on a single parameter t 
may be split into two parts6: R(t) = Rn(t) + Rp(t). The former part satisfies the con­
dition lim (lIt) g [Rn(t')J2 dt' = 0, the latter is a quasi-periodic function given 

t-oo s . 

by Rit) = L Rpj cos (21ttIClj)' where Rpj are amplitudes and Cl j periods of individual 
j=l 

oscillations. 
Random processes depending on several parameters are more often referred to as 

stochastic fields. Stationary course of the concentration e shall be regarded as a station­
ary stochastic field depending on three parameters - the coordinates. Its correlation 
function depends also on three parameters - the components of the vector x: 
If 8c(A) is the deviation of concentration from the mean at an arbitrary point A 
within the material and if 8c(A + x) is the deviation at a point at the distance x 
from A, then the corresponding correlation function is given by R(x) = E[8e(A) . 
. 8e(A + x)]. For x = 0 we have R(O) = E{(8c)2}, which, according to the definition, 
is the inhomogeneity variance Di(8c). 

The correlation function R(x) may be determined from measurements by micro­
probe along the straight lines in the direction of the vector x in various cuts through 
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the material. The problem simplifies if the stochastic field of the deviations bc is 
isotropic. If this is the case, the correlation function is independent of the direction 
of the vector x and depends on its magnitude Ixi = x only. 

PHASE-HOMOGENEOUS MATERIALS 

Apart from the random ("noise") component the fluctuating concentration in phase­
-homogeneous compact materials may exhibit also periodic components associated 
with the different concentration of the analyzed element within the core and the shell 
of the grain, or associated with a fibrous structure of the material formed during 
solidification, etc. 

If we detect by the microprobe the course of the concentration fluctuations bc 
along the direction x within the material and calculate from the detected course the 
correlation function R(x) the periodic components of the fluctuating concentration 
(summarily designated as bep) will have their corresponding periodic components 
in the correlation function (summarily designated as Rp(x)); the noise component 
of the fluctuating ben will have its corresponding non-periodic part in the correlation 
function Rn(x). The expression for the deviations: be = bCn + bCp thus has an 
analogue in terms of the correlation function: R(x) = Rp(x) + Rn(x) which is in 
accord with ref.6. Substituting x = 0 we achieve an analogous partition of the in­
homogeneity variance D;(w l ) = R(O) of the samples WI analyzed by the microprobe 
into the periodic part D;(w l ) = Rp(O) and the non-periodic part D~(WI) = Rn(O) 
(Di(w l ) = D~(WI) + D~(Wl)). In the calculation of the periodic and non-periodic 
part of the inhomogeneity variance of samples greater than those for the microprobe 
we shall start from the functions Rp(x) and Rn(x) respectively. For the sake of unam­
biguity and feasibility of the calculation we shall confine ourselves to the following 
rather simplistic model of the field of the deviations bc formulated mathematically 
in such a manner as to allow the results to be used for the general case at least as an 
estimate. 

From the various possibilities of spatial distribution of the periodic component 
we shall choose a rather simple case of an oscillating field whose principal directions of 
periodicity are parallel to the axes of the rectangular system of coordinates x I' XZ' X3: 

The random deviations ben are assumed to be normally distributed (Gaussian distri­
bution); the set is then in the statistical sense fully determined by its mean E(bCn) = 0 
and its correlation function Rn(x). The correlation function is assumed to be a non­
-increasing function satisfying in an arbitrary direction the Chinchin's relations: 
lim (lJx) S~ [Rn(x')Jz dx' = O. 
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2986 Bohacek: 

The periodic part of the inhomogeneity variance. The periodic part, D~, of the 
inhomogeneity variance depends on the size and shape of the samples and their orien­
tation in the fluctuation field simulated by Eq. (1). We shall confine ourselves now 
to the simple case of the samples OJ being in the form of a parallelepiped whose edges 
bl , bz, b3 are parallel to the axes of periodicity Xl' Xz, X3 ' 

Let the center of the sample parallelepiped be at a general point (Xl' xz, X 3) of 
the oscilating field (1). The concentration in the parallelepiped then differs from c 
by a deviation denoted <5",Cp(XI' Xz, X3) which can be computed from the relation: 

(2) 

where for J/i = 1, 2, 3) we may write 

Let us denote further by B 1> Bz, B3 the dimensions of the material (or that part 
whose inhomogeneity is being assessed) in the direction of the axes Xl' Xz, x 3 • (If the 
material is not shaped as a parallelepiped the symbols B I , Bz, B3 will refer to the 
principal dimensions in the _directions of the axes Xl' Xz, X3') As follows from the 
text below the quantities Bi serve only as auxiliary quantities which need not be deter­
mined very precisely. The variance corresponding to the deviations <5Q)cp may be 
calculated in the usual manner : 

D~(blbzb3) = (1!B j BzB3) f: 1 f: 2 f: 3 

[<5",Cp(XI ' X2, x 3)Y dXI dX 2 dX3 = A
2
K IK zK 3 

(3) 
where 

Let us note that Eqs (1) and (3) describe respectively a stratified structure (unidi­
mensional periodicity: if e.g. CX2 --+ 00, CX3 --+ 00 then <5Cp(XI' X2' x 3 ) = A cos (2nxt/cxl) 
and we have that J 2 = J 3 = K2 = K3 = 1) and a fibrous structure (periodicity in two 
dimensions: if CX3 --+ 00 then <5Cp(Xl' X2, x3) = A cos (2nxr!cx 1) cos (2nx2!cx2) and we 
have that J 3 = K3 = 1). 

Collection Czechoslov. Chem. Commun. [Vol. 42] [1977] 



Chemical Inhomogeneity of Materials 2987 

For practical reasons it may more convenient to use instead of Eq. (3) the estimate 
D;o(b l , bz, b3). This estimate is obtained by substituting into the expression for Ki 
instead of the functions of the type sin y/y a function f(y) which equals unity for 
o ~ y ~ 1 and equals l/y for y > 1. The estimate D~o(bl' bz, b3) is then given by 

(4) 

where KiO = Ci for bi ~ aj/rt, KiO = Cj(aJrtY (l/bY for bi > aJrt and Cj = 1 for 
a j ~ 4rtB j , Ci = 1/2(1 + aJ4rtB j ) for aj < 4rtBi • 

For the purpose of determining the amplitude A it is assumed that the measurement 
by the microprobe is carried out along the axis Xl and that the dimensions of the 
sample for the microprobe are sufficiently small in comparison with the periods ai. 
The periodic part of the measured correlation function then takes generally the 
form Rp(xJ) = Rp(O) cos (2rtxdal). Its course may be computed from: 

Rp(XI) = (l/al) II A2 cos (2rtx~!al) cos (2rt(x~ + xl)/al) dx~ = 

= -tA2 cos (2rtXI!al) . 

A comparison yields A = J[2Rp(O)] (Rp(O) designates the periodic part of the inho­
mogeneity variance of the samples WI analyzed by the microprobe: Rp(O) = D!(w l ), 

thus A = Dp(w l ) J2). 
The course of the deviations bCp need not be generally given by a single frequency, 

as in Eq. (1), but may be represented by a sum of s frequencies: 

s 

bCp = L Aj cos (2rtxdalj) cos (2rtxz!azj) cos (2rtx3/a3j) . 
j=l 

(5) 

For a material of infinitely large size individual periodic components are orthogonal 
and hence the corresponding correlation function measured in the direction of the 

s 

axis Xl takes the form: Rp(XI) = L RplO) cos (2rtxdalj). From the amplitudes 
j=l 

RpiO) we could again determine the amplitudes of the oscillations Aj using the rela-
tions Aj = J[2RpiO)], and, from the parametersAj, alj' aZj' a3 j' calculate the periodic 
part of the inhomogeneity variance D;j(b l , bz, b3) of the set of samples WI (parallele­
pipeds) for each oscillation separately from Eq. (3). The deviations bCp then exhibit 
the following variance: 

s 

D!(b l b2b3) = L D~lblb2b3) . (6) 
j=l 
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For materials of finite dimensions we may use the foregoing procedure only for 
the oscillations whose periods are sufficientlysniall in comparison with the dimensions 
of the material. The oscillations whose periods are comparable with the dimensions 
of the sample material will not be. dealt with in this paragraph. Their contribution 
will be assessed by the method described in the paragraph concerning the nonstation­
ary course of concentration. 

Non-periodic part of the inhomogeneity variance. In this paragraph it will be as­
sumed that the samples WI analyzed by the microprobe (in the following: basic set 
of samples) are truly cubic with the edge of the cube being denoted by a. (The real 
shape is rotationally symmetric; the correction on the error commited by the as­
sumption of cubic samples will be made later). From the cubes (a 3) we shall make up 
larger samples W k == (ka 3

). The non-periodic part of the correlation function mea­
sured by the microprobe (designated by Rn(x; a3); Rn(O; a3 == D~ta3)) will serve 
to calculate the non-periodic part of the correlation function of the larger samples 
Rn(x; ka3). Thus we also determine the non-periodic part of their inhomogeneity 
variance D~(ka3) == Rn(O; ka3). Now we denote by Xl> .. . , X k the positions of the 
cubes (a 3

) within the larger sample (ka3), xij = Xi - Xj (i, j = 1,2, ... , k) using corre­
sponding position vectors. The random component of the fluctuating concentration 
for the larger samples bkcn is the mean of the random deviations b1cn of the cubes 
of the basic set: 

(7) 

The non-periodic part of the correlation function of the larger set may then be com­
puted from the definition relation: 

k k 

+ b1cn(Xk + x)]} = k- 2 L: L: Rn(Xij + x; a3
) • 

i=1 j=1 
(8) 

The non-periodic part of the inhomogeneity variance of the larger samples is thus 
given by: 

k 

D~(ka3) = k- 2 L L: Rn(xij; a3) = 
i=1 j =1 

k-l k 

= D~(a3) k - 1[1 + 2k- 1 L: L: rn(Xjj: a3)] (9) 
i=l j=i+l 

where the normalized correlation function rn(xij; a3) is given by: rn(xjj; a3) = 

= Rn(xij; a3)ID~(a3). 
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Practical calculations following Eq. (9) are usually feasible only with the aid of 
a computer. Sometimes, however, we may do with a mere estimate derived on the 
assumption that the stochastic field of the deviations 15] cn is isotropic. From the 
procedure, however, it will be patent that eventual correlation anisotropy would 
not markedly affect the result. 

By the range of a correlation we shall term such a distance Za (a is the edge of the 
cube of the basic set) for which on 0 ~ x < Za we may write rn(x; a3) > 0 while 
for z ~ Za rn(x; a3) = O. If the dimensions of the sample (ka 3) are greater than 2Za, 

k . 

the expression L rn(x ij ; a3) in Eq. (9) has the same value C for all i referring to the 
j=i+1 

cubes (a 3
) appearing within the sample (ka3) at the distance at least Za from the edge. 

k 

For the remaining values of the index i we have L rn(x ij ; a3
) ~ C. Thus Eq. (9) 

may be further arranged to the form: j=i+1 

D~(ka3) ~ D~(a3) [1 + (2Ik) (k - 1) C] k- 1 < D~(a3) (1 + 2C) k- 1 

= D~(a3) kolk . (10) 

The right hand side of Eq. (10) is an estimate of the variance D~(ka3). This estimate 
will be designated as D~o(ka3). Thus: 

(11) 

The constant ko = (1 + 2C) is obtained by integrating the, function rn(x; a3
) over 

the region extending from the i-th cube up to the distance Za, while the beginning 
of the coordinate system is at the point of the i-th cube (rn(Xii; a3) = rn(O; a3) = 1). 
For linear samples the integration extends over the line segment of length 2Za, for 
the surface samples over the circle of radius Za and for three-dimensional samples 
the integration domain is a sphere of radius Za. The constant ko thus depends on 
the shape of the sample. 

The function rn(x; a3) determined experimentally may be approximated by a single 
or several (m) functions of a simple, easily integrable form. Expressing rn(x; a3) 
as a sum: rn(x; a3) = Y1rm1(X; a3) + Y2rn2(X; a3) + ... + Ymrnm(x; a3), where Y1' 
Y2, Ym are constants for which Y1 + Y2 + ... + Ym = 1, then in view of the linearity 
ofEq. (9) we may write for the constant ko the relation: ko = Y1 k01 + Y2 k02 + ... + 
+ YmkOm where the constant k01 corresponds to the function rn1(X; a3) of range of 
correlation Z1 a, k02 corresponds to the function r n2(X; a3) on the range of correlation 
Z2a, etc. 

For the approximation of the experimental correlation function we may, for in­
stance, use the function of the form (q i are positive constants): 
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(12) 

For the linear samples (cube a 3 form 'a column of a2 cross sectional area) we find by 
integration of the function (12): kOi = Z)qJ(qi + 1). For surface samples (formed 
by a single layer of the\ cubes a 3

) we obtain kOi = Zf1tqJ(qi + 2). Finally, three-di­
mensional samples koi = Z~ 41t qJ(qi + 3). 

For illustration we have evaluated the dependence of the variance D~(ka3) and 
its estimate D~o(ka3) on the size and shape of the samples (ka3) from Eqs (9) and 
(11) for the correlation function (12) of the range 4a (Z = 4) and of a linear form 
(q = 1; for linear samples ko = Z = 4; for surface samples ko = 1/31tZ2 = 16·75 
and for three-dimensional samples ko = 1/31tZ3 = 67'02). The results are shown in 
logarithmic coordinates in Fig. 2. The lines 1 - 3 were computed from Eq. (9), the 
lines 4-6 from Eq. (11). The lines 1 and 4 correspond to the samples in the form of 
cubes of the size a 3 Jk. The lines 2 and 5 correspond to surface samples of the form 
of parallelepipeds of the dimensions a J k, a J k, a. The lines 3 and 6 correspond 
to the samples in the form of columns of the dimensions ka, a, a. 

From Fig. 2 it is apparent that the estimate (11) is good for k > ko. For 1 ~ k ~ ko 
the variance D~(ka3) can be estimated better from the expression for D~(a3) so that 
instead of Eq. (11) we use for the estimation of D~o(ka3) the relation: 

10 

(13) 

FIG. 2 

The Variance D~(ka3) and Its Estimate 
D~o(ka3) in Dependence on Size of the 
Sample (ka3 ) 

Samples as a column 3, 6, slab 2, 5 and 
10" cube 1, 4. 
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Note: Rn(x; a3
) have been assumed to be non-increasing functions. This means that for each di­

rection x when xl < Xz we may write Rn(x l ; a3
) ;;:;; Rn(xZ; a3

). This assumption, which helps 
us divide the experimental correlation function into the periodic Rix; a3

) and the non-periodic 
part Rn(x; a3), can be substantiated by means of the following example: The correlation function 
Rn(x; a3

) of the set of cubes (a 3
) is chosen in the form depicted in Fig. 3 and is assumed to be 

isotropic at least in the plane (xl' xz) of the rectangular system of coordinates xl' Xz, x3' The 
columns of length 6a placed in parallel to the axis Xz have in the direction xl the correlation 

6 6 

function Rn(x; 6a3
) as follows from Eq. (8) (Rn(x; 6a3

) = (1/36) L L Rn(Xij; a3
) where xi'] = 

i=l j=l 

= .j(xz + Xfj) and Xij is the distance between the i-th and thej-th cube (a3
) in the column). This 

function is shown also in Fig. 3. As may be seen for x = 10 Rn(lO; 6a3
) = 0'5, while Rn(O; 6a3

) ~ 
~ 0'3. The result is thus at odds with the basic tenet of the correlation function in that for x > 0 
R(x) is always smaller or equal than R(O). The function Rn(x, a3

) satisfies the Chinchin's condi­
tion: lim (l/x)$o [Rn(x'; a3 )f dx' = O. The additional assumption, that the function Rn(x; a3

) 

x--+oo 
is a non-increasing one, removes the above discrepancy. 

Generally, the course of the correlation function in an isotropic stochastic field is 
delimited7

,8 by the relation 

. Rix) = too (sin AX/Ax) dG(A) , (14) 

where G(A) is a bounded non-decreasing function. The general equation (14) admits, 
apart from the non-decreasing functions Rn(x), also some other types of functions 
(damped oscillations). In order to facilitate practical utilization (partition of the corre­
lation function R(x) into Rp(x) and Rn(x)) we have confined ourselves in this paper 
to non-decreasing functions Rn(x) (combination of this assumption with the Chin­
chin's condition yields Rn(x) ~ 0). The experimental correlation functions of the 
concentration deviations which we have thus far encountered have fully met this 
simplified assumption. 

FIG. 3 

Selected Correlation Function Rn(x; a3
) of 

Samples (a3 ) in the Form of a Cube and the 
Correlation Function Rn(x; 6a3

) Derived for 
Direction Perpendicular to the Longest 
Edge of Sample Parallelepipeds (6a3

) 
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Correction on non-cubic shape of the sample analyzed by the microprobe. 
In a homogeneous material the sample analyzed by the microprobe is rotationally 
symmetric. The error commited by the assumption of cubic sample shall be corrected 
in the following manner: As a first approximation we shall assume that the sample 
analyzed by the microprobe is a cylinder (radius r, height h) and compare the corre­
lation function of cylindrical samples with those of cubic shape for the same isotropic 
field of deviations bcn • Both shapes of the samples may be thought to consist of a large 
number of much smaller cubes whose edge equals unity. From the non-periodic part 
of the correlation function Rn(x; 1) we shall calculate using Eq. (8) the non-periodic 
part of the correlation function of the cubic, Rcn(x; V), and the cylindrical, Rvn(x; V), 
samples. 

The comparison was made for the correlation function Rn(x; 1) of the form (12), 
linear (q = 1) with the range Z = 22, 55,220 and 550. Rcn(x; V) wer~ computed for 
cubes of the length of the edge equal 5, 6, 7, 8, and 10. Rvn(x; V) were computed 
for cylinders of the volume between 49 and 343 with the ratio 2rjh between 0·1 and 
7·9. It turned out that the correlation function Rvn(x; V) for cylinders of volume V 
has practically the same,cour.se as the correlation function Rcn(x; c:V) for the cube 
of the volume c:V. c: depends only on the shape of the cylinder (2rjh) . It depends neither 
on the volume V nor the parameter Z of the correlation functions. The dependence 
of the correction coefficient c: on 2rjh is shown in Fig. 4. For a known volume V 
analyzed by the microprobe and the ratio 2rjh we take into the calculation the vol­
ume of the cubes of the basic set a3 = c:v. 

Heterogeneous Materials 

In heterogeneous materials we cannot expect the random component bell of the 
concentration deviation from the mean concentration to be normally distributed 

I 
I 
I 

3 I 

2rl h 

FIG. 4 

Dependence of the Correction Coefficient e 
~n the Ratio of the Diameter 2r of the Sample 
Cylinder to its Height h 
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as was the case of phase-homogeneous materials. The calculation of the inhomogenei­
ty variance thus has to be corrected. 

Let the material contain grain of m phases. Let us denote by c( w) the weight con­
centration of the analyzed element in the sample w. g/w) is the weight concentration 
of the i th phase in wand ci ( w) is the concentration of the analysed element in the 
part of the i-th phase belonging to the sample w. The corresponding means are 
E[c(w)] == C, E[ci(w)] == ci , E[gi(W)] == gi ' 

Let us assume that the fluctuations of concentration within the phase about the 
mean phase concentration Ci are stationary and satisfy also additional assumptions 
given above for the phase-homogeneous materials. The stationarity is assumed 
also for the deviations bgi = gi( w) - gi which are due to the nonuniformity of distri­
bution of the grains of different phases on one hand and due to inhomogeneity proper 
on the other hand. 

For c(co) we may write generally: 

c(w) = I gi(W) ci(w). (15) 
i=1 

Upon looking on the whole material w as a sample (w -+ M), Eq. (15) applies also 
. to the quantities c(M), gi(M), ci(M). It can be easily shown that Eq. (15) remains 
valid also for the mean values C, gi' ci by proving the relations C = c(M), gi = gi(M) 
and ci = ci(M). Designating, for instance, the weight of the sample w by G(w) (the 
samples w of the same set has the same shape and volume), G/ w) the weight of the 
i-th phase in w, then g/w) = Gi(w)/G(w) and we may write gi = Ig/w) G(w)/ 

'" G(M) = gi(M), where I designates summation over all samples compounding the 

'" material M. Analogous is true for ci and C. 
More easily accesible to measurement than gi(W) is the volume concentration of the 

i-th phase vi(w) related to g/w) by the expression: g 1( ill) = vi(w) Si(W )/s(w). s/w) is the 
rn 

specific weight of the i-th phase in w, s( w) = I Vie w) s/ w) is the specific weight of the 
i=1 

sample. Among the mean values gi' Vi' Si' S there exist the same relations; the proof is 

similar as that for gi' Ci' C. 
The effect of heterogeneity of the material on the inhomogeneity variance of the 

samples w will be examined in terms of the quantity ch ( w) indicating the concentration 
of the analyzed element in the sample w provided the concentration in the phases are 

at their mean values ci . Thus Ch(W) = I g;(w) ci , where g;(w) = VieW) sd( f viw) sJ 
i=1 j=1 

(For a sample w which is entirely from the i-th phase we have Ch(W) = C;). The 
deviations of the concentrations c(w) from C shall be divided into two parts: 
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m 

The deviations DCh = Ch(W) - C = L [g;(w) - gJ C; reflect the nonuniformity of 
;=1 

the presence of the phases in the samples w; corresponding variance shall be termed 
the heterogeneity variance and designated by D~( w) == D2( Dcb). The deviations Dec = 

m 

= c(w) - Ch(W) = L [(g;(w) - g;(w) C; + g;(w) DcJ depend on one hand on con-
;=1 

centration fluctuations within the phases (if in all phases De; == c;(w) - C; = 0 then 
DCe = 0), and, on the other hand, on the presence, g;(w), of the phases in the samples. 
Corresponding variance Die w) == D2( Dcc) shall be termed the intraphase variance 
Generally speaking, the deviations Deh, DCr are not statistically independent. Thus 
for the inhomogeneity DJ(w) == D2(De) we may write: 

(17) 

The correlation coefficient (I( Dcc, Dch) may generally take values between -1 and 
+ 1. DJ( w) thus ranges between the limits (De( w) - Dh ( w))2 and (Dc( w) + Dh( w))2 
which are of the same order .of magnitude at sufficiently different values Dr(w) and 
Dh ( w). A surplus of the analyzed sample in a certain point gives rise on solidification 
of a compact material to preferential formation of the phases with higher phase 
concentration than the mean concentration. This means that at this point we may 
also write Deb > 0 and Dcc > 0 (see the definition of the deviations in this paragraph). 
Analogously at points of instantaneous shortage of the analyzed element we may write 
the relations Dcc < 0 and DCh < O. It may thus be expected that the correlation coef­
ficient (I( Deh, Dcc) will not take negative values. DJ( w) then falls between (DH w) + 
+ D~(w)) and (Dr(w) + Db(W)Y (the upper limit is at most twice the lower limit). 
In the following text we shall usually confine ourselves to the expression of the in­
homogeneity variance of a heterogenous materials from: 

DJ(w) = DHw) + D~(w). (18) 

Intraphase variance. For the calculation of the intraphase variance DHw) of 
samples w greater than those for the microprobe from the deviations Dcc found by 
the microprobe we have at our disposal the approach outlined in the foregoing 
paragraphs. However, the field of the deviations DCe is different from the deviations 
Dc of a single phase material. The samples analyzed by the microprobe are in various 
phases different and hence cannot be used to make up larger samples. Theoretically, 
one can use in each phase a different accelerating voltage in order to make the analyzed 
sample equally large. In practice, however, it is more likely that we use the following 
procedure: The measurement is carried out at the same accelerating voltage. From 
the analyzed samples (an we then find the maximum one (designated a~) and calcu­
late from the phase correlation functions R;(x; an (calculated from the deviations 
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Cr in individual phases; Ri(O; an == Dii(an are intraphase variances) using Eq. (9) 
the variances Dii( aiJ The deviations Ocr in each phase are then transformed using: 
(jIer = (jcrDfi(a~)/Dr/an . The field of the deviations (jiCr corresponds to the samples 
of identical size a~. 

The formation of the larger samples w from k cubes of the basic set (size a~) 
leading to summation of the non periodic parts (j1 Crn of the deviations (ji Cr various 
densities of the phases apply. Thus instead of Eq. (7) we have to use the following, 
more general expression: 

k 

(jkCrn = (Ilk) L [s(Xj)/s(w)] (jICrn(Xj)' (19) 
j=1 

where s(X j ) is the specific weight of the j-th cube of the volume a~ in the sample w 
k 

(of volume ka~) and sew) = (l/k) L s(X j ). The samples for the microprobe (a~) are 
j=l 

currently much smaller than the grain of individual phases and, consequently, the 
cubes forming the samples may be regarded as phase-homogeneous. Just as in Eq. (7) 
it was assumed that the density of individual cubes equals the mean density of the 
single-phase material, S, we shall now assume that in Eq. (19) each density s(X j ) 

equals some of the mean phase-densities, Si. 
If the samples ware large enough for we could with sufficient accuracy write 

s( w) = S, the deviations (j I Cr may be multiplied in each phase by the corresponding 
ratio si/s. For the non-periodic parts (j~ Crn of the resulting deviations (j~ Cr = (ji Cr· sJs 
we have again Eq. (7). For (j~crn' however, it is not realistic to expect the normal 
distribution unless the phase variances D;?(a~) = (SJS)2 Dii(a~) are equal in all 
phases (even though in individual phases the deviations (j~ Crn are normally distrib­
uted). Therefore we transform the deviations (j~ Cr in individual phases to the common 
unit variance by the transformations (ji Cr = (j~ cr/ D;/ a~). 

The field of the deviation (ji cr is no longer sufficiently representative for the calcu­
lation of the intraphase variance Di( w) but we may still apply the procedure derived 
for single-phase materials and the variance Die w) can be at least estimated. From 
the deviations (ji Cf we then calculate the normalized correlation function r*(x; a~) 
and from this in turn the variance d*2( w) corresponding to the samples w in the field 
of the deviations (ji Cr. On multiplying each deviation (ji Cf by the maximum standard 
phase deviation D;i( a~) (designated D:nax), the samples in this field of deviations will 
have their corresponding variance D~~axd*2( w) which is the upper limit for the true 
value of the intraphase variance Die w); analogously the lower bound is D~~ind*2( w). 
Roughly we may estimate Di(w) by Dio(w) determined from the following relation: 

Dlo(w) = d*2(W) I viD;~(a~) . (20) 
i=1 
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This estimate is substantiated by the following property: If some oftLe phases in 
the material dominates (e.g. VI ~ 1 and hence for i = 2, ... , m then Vi ~ 0). The 
estimate in Eq. (20) approaches the true value of the intraphase variance (Dio(w) ~ 
~ DMw) ~ Di(w)). The estimate (20), in addition, always satisfies the condition 
D;;ind*2(w) ;;; Dio(w) ;;; D~~axd*2(w).~ 

If the samples ware not large enough as to encompass a sufficient number of 
grains of different phases and the condition s(w) ~ s for the transformation blcr -> 

-> b~cr is not fulfilled, we may take larger samples w', for which the above procedure 
applies; Di(w) or Dio(w) is then determined by interpolation. On the side of smaller 
samples than w we find the intraphase variance of the samples for the microprobe 

(a~) from the expression Di(a~) = I viDii(a~). The same formula may be used to 
i=1 

estimate also the intraphase variance up to the size of the samples (q1") approaching 

the size of phase-homogeneous grains: Di(w") = f viDii(W") where the variances 
i=1 

D~( w") are computed from the intraphase correlation functions by a similar procedure 
leading to Dii(a~). 

Heterogeneity variance. For direct calculation of variance due to heterogeneity, 

D~(w) from the deviations bch = f (g;(w) - gi) ci we would have to find in each 
i=l 

set of the samples w the volume phase concentrations v/w). We would thus be con-
fined to the samples whose thickness corresponds to the thickness of the layer ana­
lyzed by the microprobe. 

Of more general use for larger samples is the following method based on the pro­
cedure outlined in the preceding paragraphs. This method, however, works with 
samples WI of the basic set which are not in the form of cubes but rather parallele­
pipeds: On a photograph of a material cut we shall draw a set of parallel lines of 
length L representing parallelepipeds of square cross section (samples WI). The depth 
of the sample equals the thickness of the layer analyzed by the microprobe (and hence 
is usually smaller than the size of the grains). If the parallelepiped intersects with the 
grains of the i-th phase on a total length Li then Vi(W I ) = Li/L. For the parallelepipeds 
we calculate the concentrations Ch(W I ) and from the deviations bCh = Ch(W I ) - C 
the correlation function R(x; WI) for the direction perpendicular in the plane of the 
thin cut to the drawn lines. The variance D~(w) of the samples w formed by the 
parallelepipeds can then be computed as outlined in the previous paragraphs. From the 
conditions of the normal distribution of the non-periodic parts bchn of the deviations 
bCh there follows the necessity that the length of the parallelepipeds be large enough 
for they could intersect with a sufficient number of grains of different phases. The use 
of this method is limited to samples considerably larger than the size of the phase­
-homogeneous parts of the material. 
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For samples w smaller than the size of the grain the heterogeneity variance D~( w) 
may be computed in the following manner: Let us designate by Sij the magnitude of 
the interfacial area between the i-th and the j-th phase related to a unit volume and 
by b the size of the samples w in direction perpendicular to Sij (the shape of w is 
approximated by a cube of the size b). Because the probability that a random sample 
w in the material will have its center in the i-th phase is Vi' we may write for the vari­
ance due to heterogeneity the relation: 

(21) 

The first sum in Eq. (21) expresses the contributions of the samples coming all from 
a single phase. The second sum is a contribution of the samples encompassing two 
phases; the contributions of the samples encompassing three or more phases are 
neglected. cij(x) is the concentration Ch in the sample whose center lies in the i-th 
phase at the distance x (x < b/2) from the interface between the i-th and j-th phase 
(Fig. 5). On designating by Vi(x) or Vj(x) the volume of that part of the sample coming 
from the i-th or thej-th phase (Vi(x) + V/x) = V(w) = const.) then we may write 
for cJx) the relation: 

(22) 

In the following we shall confine ourselves to the estimate D~( w) based on the as­
sumption that the course of concentration in the transition layer adhering to the inter­
face is linear (cJx) = 1/2(c i + cj ) + (c i - cj ) (x/b)) . Eq. (21) can then be rearranged 
to a simpler form: 

FIG. 5 

Course of Concentration c(w) = Ci/x) in 
Samples w-Cubes (b 3) in the Neighbourhood 
of Interface Sij 
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m-l m 

D~(w) = D~(O) - I I bSij i(ci - cj )2 , (23) 
i=1 j=i+l 

m 

where D~(O) = I Vi(Ci - c)2 is the heterogeneity variance of infinitesimal samples 
i=1 

web ~ 0). With increasing b the value of D~(w) decreases from D~(O) the faster the 
larger the surfaces Sij' i.e. the finer the dispersion of individual phases and hence the 
lower the heterogeneity. 

The mentioned isometricity of the samples w (cubic shape of the samples w) is not 
a necessary condition. Eq. (23) shall be generalized for the cases that the principal 
directions of shape anisotropy of the samples wand the grains in the material are 
identical with the axes of a rectangular coordinate system Xl' X 2 , X3: On approximat­
ing the shape of the sample and the grain by parallelepipeds and on designating the 
edges of the sample-parallelepipeds parallel to Xl' X2' X3 by bi> b2, bj and the surface 
of the interfaces (per unit volume) parallel to the planes (X2X3), (X l X3), (XIX2) by 
the symbols Sij1 ' Sij2, Sij3, Eq. (23) changes into: 

m-l m 

D~(w) = D~(O) - I I (b 1Sij1 + b2 Sij2 + b3 S ij3) iCCi - CJ2 . (24) 
i = 1 j=i+l 

The parameters Sij1, Sij2, Sij3 may be measured as the length of the interfaces on 
planes cut through the material parallel to the planes (X2X3), (X l X3)' ( XlX2). Examining 
the cut parallel to the plane (X2X3)' then according to our notation the interfaces 
Sij2 and Sij3 are perpendicular to the surface (cut). On designating by lij2 (or lij3} 
the length of the limits between the i-th and the j-th phase perpendicular to the axis 
X2( or X3) in a unit area of cross section, then the magnitude of the interface in the 
volume of the surface shell of thickness dh below a unit area of the surface are given 
by lij2 dh or lij3 dh . For a unit volume we thus may write Sij2 = lij2 and Sij3 = lij3 . 
Sijl is determined from the cut parallel to the plane (X l X3) or (X 1X 2). 

On the cut we can also measure the mean volume concentrations of the phases, Vi. 

If on a cut of area S parallel to the plane (X2 X3) the surface occupied by the i-th 
phase is Si ' then in the layer of thickness b1 analyzed by the microprobe the volume 
concentration of the i-th phase is given by Vi = (Sibl)/(Sbl) = Pi' where Pi = SJS­
is the surface concentration of the i-th phase on the surface of the cut. If the spatial 
arrangement of the grain of the i-th phase in the direction perpendicular to the surface 
of the cut (i.e. in direction Xl) is stationary, we find on a set of cuts parallel to the 
plane (X 2 X 3) the surface concentrations Pi which are estimates of the mean value 

Pi = Vi· 
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NON-STATIONARY COURSE OF CONCENTRATION 

Non-stationary course of concentration means that either cor R(x) are not invariant 
with respect to translation. Thus either the mean course of concentration depends 
on some of the direction (or directions) in the material, or, eventually, the correlation 
function R(x) is not the same in all parts of the material. 

The mean course of concentration found either graphically or by regression is 
designated by Cr (Fig. 1); the index x refers to regression estimates of also additional 
quantities: gir> Cir> Vir> Sir> Sr' Among Cr, gir> Cir there exist again the following relation-

rn 

ship: Cr = L gircir (Eq. (15) and the text below). 
i=1 

The deviation of concentration of the analyzed element in the sample can be again 
divided into two parts: 

bc = c(w) - C = [c(w) - crJ + [cr - cJ = bCg + bc, . (25) 

Owing to the statistical independence of bCg and be r (following from the definition of 
cr) we may write for the corresponding variances: 

(26) 

The variance D;( w) == D2( l5cr ) shall be termed the regression variance. For the samples 
w it can be computed from the equation: 

D;(w) = U/V(M))f . (cr - cY dV , 
V(M) 

(27) 

where Sv(M) designates triple integral over the volume of the material VeAl). 
Eq. (27) is based on the usual expression for the variance: D2 = L(ci - c)2 Vi' 

i 

where the relative frequency Vi is replaced by the probability dV/V(M) of the event 
that the center of the sample w will appear in the element d V. On the other hand in 
the calculation of the mean weight concentration C, the contribution of a part of 
material of volume 11 V; is proportional to its relative weight Gi/G(M). For integration 
this can be replaced by the expression Sr dV/(SV(M)): C = LcriGdG(M), or c = 
= (.W(M)tl JV(M) CrSr dV. i 

The symbol C
r 

in Eq. (27) stands for the value of the regressed concentration in 
the center of the sample w for which the difference Cr - C is being calculated. Strictly 
speaking, we should also consider the dependence of Cr on w: Designating by cr(dw) 
the course of regressed concentration following from the analyses carried out for in­
finitesimal samples dw then the values cr ( w) would represent the mean concentrations 
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cr(dw) in the samples w: cr(w) = (V(w) s.(w)t 1 Sv(Oll cr(dw) s'(dw) dV, while between 
the regression specific weight sr( w) of the sample w of the volume V( w) and the regres­
sion specific weight sr( dw) of the samples dw of volume d V there would exist a similar 
relationship: sr(w) = (ljV(w)) Sv(Oll s'(dw) dV. Of course, usually the concentrations 
cr( dw) and C.( w) differ so little that we shall do with Eq. (27). 

The deviations bcs represent the fluctuations of the concentration about the mean 
value Cr ' Formally, at least within each volume dVthis oscillations satisfy the condition 
of stationarity utilized in the preceding paragraphs. Accordingly, the corresponding 
variance D~ ( w) == D2( bcs) shall be called stationary part of the inhomogeneity vari­
ance. 

According to the preceding paragraphs we may in each region of stationarity d V 
divide the deviations bes into the intraphase part bef = [c( w) - ch.( w)] and the 

m 

heterogeneous part beh = [chr(w) - cr], where chr(w) = I g~(w) Cip g'((w) = v;{w). 
m i=1 

. sirjI v/w) Sjr and calculate (from the measurements with the microprobe) corre-
j=l 

sponding variance Di{w; dV) and D~(w; dV). From these by integrating over the 
whole volume of the material V(M), we can in turn calculate the intraphase variance 
Di{ w) and heterogeneity variance D~(m) from the relations: 

D~(w) = (ljV(M)) Sv(MlD~(w; dV) dV, 

D~(w) = UjV(M)) Sv(MlD~(w; dV) dV. (28) 

As long as the conditions of stationarity are satisfied in the whole material, or at least 

in finite volumes Vj (j = 1,2, ... w; I Vj = V(M)), integrals in Eq. (28) changes into 
j=1 

summations and the variances Di{ w) and D~( w) of the samples may be computed 
from: 

Di(w) = (ljV(M)) I D~lw) Vj, 
j = l 

D~(w) = (ljV(M)) L: D~lw) Vj, (29) 
j=l 

where D~( w) and D~/ w) designaies the intraphase variance and the heterogeneity 
variance in the j-th volume. The variance D~( w) is then found from Eq. (18): D~( w) = 
= Di{ w) + D~( w). Hence the inhomogeneity in materials with instationary course 
of concentration is given by: 

Di{w) = D;(w) + Di{w) + D~(w). (30) 
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CONCLUSION 

The main problem we tried to solve was to estimate the inhomogeneity variance 
for methods analyzing compact samples and working with materials of various 
shapes and sizes. For this purpose it was assumed that the initial information about 
the distribution of the analyzed element in the material is obtained by means of a mi­
croprobe. 

It turned out that the inhomogeneity variance Di( w) of the set of samples w is 
a sum of three components of which the first, the regression variance D;(w), is due 
to the deviation of the regression course of concentration from the mean. The second 
part, the heterogeneity variance, is associated with the size, shape and non-uniformity 
of distribution of the grains of various phases within the material while the third 
part, the intraphase variance Di( w), reflects the fluctuation of concentration of the 
analyzed element within the phases. The principal parameters that must be measured 
analyzed element within the phases. 

The principal parameters that must be measured in order that we may be able to 
determine the inhomogeneity variance and its components are concentrations of ana­
lyzed element within the phases Ci and volume concentrations Vi' The course of Ci 

can be measured by the microprobe, Vi can be determined from photographs of 
various cuts through the material. From the course of Ci and Vi within the material 
and from the course of additional parameters derived from Ci and Vi we are in turn 
able to determine the inhomogeneity variance following the procedure outlined in the 
above text for the set of samples of chosen size and shape. 

With the aid of the methods described in this paper one is able to determine, 
or at least to estimate, the contribution of inhomogeneity of the material to the overall 
variance if the results of analyses carried out in the compact material (spectroscopic 
methods). One is also able to determine the inhomogeneity variance of single-particle 
samples of a granular material prepared from the given compact material (the use 
of this method for the determination of inhomogeneity of granular materials will be 
dealt with in the next paper). 

The possibility of separating individual components of the inhomogeneity variance 
may be put to use in the choice of technological schemes leading to the improved 
homogeneity of materials. 

Thanks are due to Dr K. Rohlena and Dr L. Lejcek, Physical Institute, Czechoslovak Academy 
of Sciences, for their invaluable comments which helped me complete this work. 
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